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Abstract

Let (Xn) be an unbounded sequence of finite, connected, vertex transitive graphs
with bounded degree such that |Xn| = o(diam(Xn)q) for some q > 0. We show that
up to taking a subsequence, and after rescaling by the diameter, the sequence (Xn)
converges in the Gromov Hausdorff distance to a torus of dimension < q, equipped
with some invariant length metric. The proof relies on a recent quantitative version of
Gromov’s theorem on groups with polynomial growth obtained by Breuillard, Green
and Tao. IfXn is only roughly transitive and |Xn| = o

(
diam(Xn)δ

)
for δ > 1 sufficiently

small, we are able to prove, this time by elementary means, that (Xn) converges to a
circle.

1 Introduction

A graph X is vertex transitive if for any two vertices u and v in X, there is an automorphism
of X mapping u to v. Let (Xn) be a sequence of finite, connected, vertex transitive graphs
with bounded degree. Rescale the length of the edges of Xn by 1

diam(Xn)
, where diam(Xn)

denotes the graph diameter, and denote the resulting metric space by X ′n. A metric space
M is the scaling limit of (Xn) if (X ′n) converges to M in the Gromov Hausdorff distance.
See e.g. [4, 7] for background on scaling limits and Gromov Hausdorff distance.

In this paper we address the following questions: when is the scaling limit of such a
sequence a compact homogeneous manifold? And in that case, what can be said about
the limit manifold? By a compact homogeneous manifold, we mean a compact topological
manifold M equipped with a geodesic distance (not necessarily Riemannian), such that the
isometry group acts transitively on M . The limit manifold (when it exists) was characterized
long ago by Turing, who proved that the only compact Lie groups approximable by finite
metric groups are tori [12]. A standard argument allows us to deduce from this that any
compact homogeneous manifold approximated by finite homogeneous metric spaces must be
a torus (see Proposition 5.1.1).

Our main result is the following.

1



Theorem 1. Let (Xn) be a sequence of vertex transitive graphs with bounded degree such
that |Xn| → ∞ and |Xn| = o(diam(Xn)q). Then (Xn) has a subsequence whose scaling limit
is a torus of dimension < q equipped with some invariant proper length metric.

Remark: We conjecture that the conclusion still holds without the assumption of bounded
degree.

Let us consider an example of a sequence for which Theorem 1 holds. Given a ring A, one
can consider the Heisenberg group H(A) of 3 by 3 upper unipotent matrices with coefficients
in A. Now let Xn be the Cayley graphs of the groups H(Z/nZ) equipped with the finite
generating set consisting of the 3 elementary unipotent matrices and their inverses. The
cardinality of Xn equals n3 and easy calculations shows that its diameter is in Θ(n). For
every n, we have a central exact sequence

1→ Z/nZ→ H(Z/nZ)→ (Z/nZ)2 → 1,

whose center is quadratically distorted. In other words, the projection from Xn to the Cayley
graph of (Z/nZ)2 has fibers of diameter '

√
n. It follows that the rescaled sequence (X ′n)

converges to a 2-torus.
The proof of Theorem 1 makes crucial use of a recent quantitative version of Gromov’s

theorem obtained by Breuillard, Green and Tao [3], allowing us to reduce the problem from
vertex transitive graphs to Cayley graphs of nilpotent groups. We think an interesting and
potentially very challenging open question is to provide a proof of Theorem 1 that does not
use this heavy machinery.

In Section 3, we present an elementary proof of a similar result, where the requirement
that Xn be Cayley graphs is weakened, but the assumption on the diameter is strengthened.
Recall that for C ≥ 1 and K ≥ 0, a (C,K)-quasi-isometry between two metric spaces X and
Y is a map f : X → Y such that

C−1d(x, y)−K ≤ d(f(x), f(y)) ≤ Cd(x, y) +K,

and such that every y ∈ Y is at distance at least K from the range of f . Let us say that
a metric space X is (C,K)-roughly transitive if for every pair of points x, y ∈ X there is a
(C,K)-quasi-isometry sending x to y. Let us call a family of metric spaces roughly transitive
if there exist some C ≥ 1 and K ≥ 0 such that each member of the family is (C,K)-roughly
transitive. In Section 3, we will provide an elementary proof of the following theorem.

Theorem 2. Suppose (Xn) is a roughly transitive sequence of finite graphs such that |Xn| →
∞. There exists a constant δ > 1 such that if

|Xn| = o(diam(Xn)δ),

then the scaling limit of (Xn) is S1.
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Modifying slightly the proof of Theorem 2, one can prove that for an infinite, roughly
transitive graph X with bounded degree, there exists R > 0, C > 0 and δ > 0 such that if
the volume of a ball of radius R′ ≥ R is less than CR′1+δ, then X is quasi-isometric to R.
Even for vertex-transitive graphs, this provides a new elementary proof (compare [5]).

Organization: In Section 2 we prove Theorem 1. In Section 3, we prove Theorem 2. In
Section 4, we provide a second elementary proof of Theorem 2, restoring the assumption
that the Xn are vertex transitive, rather than quasi-transitive. Finally in the last section,
we discuss the optimality of our results and related open questions.

2 Proof of Theorem 1

Given a group G with finite generating set S, we will let (G,S) denote the corresponding
Cayley graph. Let Dn denote the diameter of Xn.

2.1 Reduction to nilpotent groups

The first (and main) step of the proof is the following reduction.

Proposition 2.1.1. There exists a sequence of nilpotent groups Nn with uniformly bounded
step and generating sets Tn of uniformly bounded cardinality such that Xn is (O(1), o(Dn))-
quasi-isometric to (Nn, Tn).

Fix some x ∈ Xn. Let Gn be the automorphism group of Xn, Hn the stabilizer of x, and
Sn be the subset of Gn containing all g such that g(x) is a neighbor of x. When it is clear
from context, let Gn denote the Cayley graph of Gn with generating set Sn. We will need
the following lemmas.

Lemma 2.1.1 (Doubling in Xn). There exists a K depending only on q so that the following
holds. For all R0 > 0 there exists an R = R(n) > R0 so that |BXn(100R)| ≤ K|BXn(R)| for
all large enough n, and R(n) = o(Dn).

Proof. Suppose |BXn(100R)| > K|BXn(R)| for all R0 < R < D
1/2
n . Then

|Xn| ≥ |BXn(D1/2
n )| > K log100 (D

1/2
n /R0)|BXn(R0)| ≥ CD(1/2) log100K

n ,

for some C independent of n. Letting K = 2q+1, there is some N such that for n > N this
cannot hold.

Lemma 2.1.2 (Doubling in Gn). There exists a K depending only on q so that the following
holds. For all R0 > 0 there exists an R = R(n) > R0 so that |BGn(100R)| ≤ K|BGn(R)| for
all large enough n, and R(n) = o(Dn).
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Proof. The vertices of Xn correspond naturally to the cosets of Hn, and Xn is isomorphic to
the Schreier graph (Gn/Hn, Sn). The projection mapping (Gn, Sn) to (Gn/Hn, Sn) is a graph
homomorphism, as HnSnHn = Sn, and so for all h, h′ ∈ H we have y = zs for some s ∈ Sn
if and only if yh = zh′s′ for some s′ ∈ S. The homomorphism from (Gn, Sn) to (Gn/Hn, Sn)
sends BGn(r) to BXn(r) for all r ≥ 0. So both sides in Lemma 2.1.1 are multiplied by the
same constant.

The main tool in our proof is the following theorem from [3] (although not exactly stated
this way in [3], it can be easily deduced from [3, Theorem 1.6] using the arguments of the
proof of [3, Theorem 1.3]).

Theorem 2.1.1 (BGT). Let K ≥ 1. There is some n0 ∈ N, depending on K, such that the
following holds. Assume G is a group generated by a finite symmetric set S containing the
identity. Let A be a finite subset of G such that |A5| ≤ K|A| and Sn0 ⊂ A. Then there is a
finite normal subgroup F / G and a subgroup G′ ⊂ G containing F such that

• G′ has index OK(1) in G

• N = G′/F has step and rank OK(1).

• F is contained in AOK(1).

To apply Theorem 2.1.1, we will need the following two lemmas.

Lemma 2.1.3. (Finite index subgraph) Let X be a connected graph of degree d, and G a
group acting transitively by isometries on its vertex set. Let G′ < G be a subgroup of index
m <∞. Let X ′ be a G′-orbit. Then X ′ is the vertex set of some G′-invariant graph that is
(O(m), O(m))-QI to X, and whose degree is bounded by d2m+1.

Proof. Denote by [X ′]k the k-neighborhood of X ′ in X. Since it is G′-invariant, [X ′]k is a
union of G′-orbits of X. But X is a union of m G′-orbits, so X = [X ′]m. Define a G′-
invariant graph on X ′ by adding edges between two vertices of X ′ if they are at distance at
most 2m + 1. Let y, y′ ∈ X ′ and let y = x0, . . . , xv+1 = y′ be a shortest path between them
in the graph X. Let y0 = y and yv+1 = y′, and for each i = 1 . . . v, one can find an element
yi in X ′ at distance at most m from xi. Clearly the distance between two consecutive yi
is at most 2m + 1, so they are connected by an edge. Thus, dX′(y, y

′) ≤ dX(y, y′). Since
dX(y, y′) ≤ (2m+ 1)dX′(y, y

′), we see that X ′ is (2m+ 1,m)-QI to X.

We will need the following basic lemma. Let Cj(G) be the descending central series of
G, i.e. let C0(G) = G, and Ci+1(G) = [G,Ci(G)].

Lemma 2.1.4. Let G be an l-step nilpotent group, and let S be a symmetric subset of G.
Then for every h ∈ G and every g ∈ 〈S〉, [g, h] can be written as a product of iterated
commutators of the form [x1, [. . . , xi] . . .], with i ≤ l − 1, where for each j = 1 . . . i, xj ∈
S ∪ {h±}, and at least one of the xj ∈ {h±}.
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Proof. Without loss of generality we can suppose that G is the free nilpotent group of class l
generated by S∪{h±}. We shall prove the lemma by induction on l. For l = 1, the statement
is obvious as the group G is abelian. The case l = 2 is interesting as it reveals the key idea:
one can use the formula [h, gg′] = [h, g][h, g′] to break [h, g] into a product of [h, s], where
s ∈ S.

Let us assume that the statement is true for l ≤ l0 and suppose that G is (l0 + 1)-
step nilpotent. Applying the induction hypothesis to G/C l0(G), we deduce that [g, h] is
the product of some y ∈ C l0(G) with elements [x1, [. . . , xi] . . .] where i ≤ l0 − 1, each
xj ∈ S ∪ {h±}, and at least one xj in each term is in {h±}.

The element y can be written as a product of elements of the form [g1, [. . . , gl0 ] . . .] with
gj ∈ G. Since G is (l0 + 1)-step nilpotent, the iterated commutator [g1, [. . . , gl0 ] . . .] induces

a morphism of abelian groups
⊗l0

i=1G→ C l0(G). Writing each gj as a word in S∪{h±} and
using this morphism, we can write y as a product of terms of the form [a1, [. . . , al0 ] . . .] with
ai ∈ S ∪ {h±}.

We have shown that [g, h] can be written as a product of iterated commutators in S∪{h±};
it remains to show that each term from y contains at least one xj ∈ {h±}. The terms obtained
from y commute with each other, so we can gather the terms without h± into a single word
w. Let N denote the normal subgroup generated by h. Since [g, h] = hgh−1, we know that
[g, h] ∈ N . Similarly, each iterated commutator containing h± is in N , so w ∈ N . But
w is also in the subgroup H generated by S, and because G is the free nilpotent group of
class (l0 + 1) generated by S ∪ {h±}, we have that N ∩H is trivial. Thus w is trivial. This
completes the proof of the lemma.

Corollary 2.1.1. Let G a l-step nilpotent group generated by some symmetric set S. Then
for every element h ∈ G, the normal subgroup generated by h is generated as a subgroup by
the elements hx, where x ∈ (S ∪ {h±})k, with k ≤ 4l.

Proof. Note that hg = [g, h]h. Applying the lemma to the commutator [g, h] yields a product
of iterated commutators with letters in S ∪ {h±}, where h± appears at least once in each.
We leave to the reader to check that such a commutator is a product of conjugates of h±

by elements x whose word lengths with respect to S ∪ {h±} are at most that of an iterated
commutator [a1, [. . . , al−2] . . .]. The length kl of such commutator is defined inductively as
k1 = 0, and kl+1 = 2kl + 2. Thus, kl ≤ 4l.

The following lemma has its own interest (compare [6]).

Lemma 2.1.5. Let X be a transitive graph with degree d < ∞, and let G be a nilpotent
group acting faithfully and transitively on X. Then the cardinality of any vertex stabilizer
H is in Od,r,l(1), where r and l are the rank and step of G. More precisely, let H = ⊕pHp be

its p-torsion decomposition (which holds since H is nilpotent). Then maxp p
n ≤ d8

l
, where

pn is the maximal order of an element of Hp.

Proof. Recall that the rank of any subgroup of G is in Or,l(1), hence the second part of the
lemma implies the first one.
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The set of vertices of X can be identified with G/H, with x corresponding to the trivial
coset H. Faithfulness of the action is equivalent to the fact that H does not contain any
non-trivial normal subgroup of G. Observe that the action by left-translation by H preserves
the set of neighbors of H. As in the proof of Lemma 2.1.2, we equip G with a generating
set S such that X is isomorphic to the Schreier graph (G/H, S), which implies that S is
bi-H-invariant. In particular one has H ⊂ S2.

The proof roughly goes as follows: for every element of Hp of order pn, we will show
that there is a vertex in the ball of radius 8l of X whose orbit under the action of H has
cardinality at least pn.

By assumption, the normal subgroup generated by hp
n−1

is not contained in H. Thus
by Corollary 2.1.1, there exists g ∈ (S ∪ H)4

l ⊂ S8l such that g−1hp
n−1
g does not belong

to H. But then this implies that for all i = 1, . . . , pn, the vertices higH are distinct, for
if higH = hjgH for some 1 ≤ i < j ≤ pn, then y = g−1hi−jg ∈ H. Write i − j = pab,
with a < n and b coprime to p. There is some c so that cb = 1 mod pn. Then H contains
ycp

n−1−a
= g−1hp

n−1
g, which is not in H, giving a contradiction. Hence, the higH are distinct

for every 1 < i < j ≤ pn. Since g has length at most 4l, and the left-translation by H
preserves the distance to the origin, the number of such translates is at most the cardinality
of the ball of radius 8l, i.e. at most d8

l
, so we are done.

Observe that the same argument can be used to prove that H does not contain any
element of infinite order.

Proof of Proposition 2.1.1. By Lemma 2.1.2, we can find a sequence Rn with both Rn and
Dn/Rn tending to infinity such that |BGn(100Rn)| ≤ K|BGn(Rn)|. Then by Theorem 2.1.1
applied to A = BGn(Rn), we obtain a sequence of groups G′n and N ′n = G′n/Fn such that
G′n has uniformly bounded index in Gn, Fn has diameter o(Dn), and N ′n is nilpotent with
uniformly bounded step and rank. Associate the generating set S ′n (to be defined) with G′n,
and the projection T ′n of S ′n to N ′n.

Proposition 2.1.1 now results from the following facts.

• Since G′n has bounded index in Gn, by Lemma 2.1.3 there exists a G′n-invariant graph
structure X ′n on G′n/H

′
n which is (O(1), O(1))-QI to Xn and has bounded degree. Define

S ′n to be the generating subset of G′n consisting of elements projecting to B(H, 1) in
X ′n.

• The graph Yn obtained by quotienting X ′n by the normal subgroup Fn also has bounded
degree, and the quotient map X ′n → Yn has fibers of diameter o(Dn). Hence Yn is
(1, o(Dn)-QI equivalent to X ′n.

• Let Ln be the kernel of the action of N ′n on Yn, and define Nn = N ′n/Ln. Then Nn acts
faithfully and transitively on Yn, so Yn is isomorphic to (Nn/H

′′
n, Tn), where H ′′n is the

stabilizer of a vertex x, and Tn is the set of elements of Nn taking x to a neighbor of x.
But Nn and therefore H ′′ is nilpotent of bounded step and rank and Yn has bounded
degree, so we deduce from Lemma 2.1.5 that H ′′n is uniformly bounded. Thus, Yn is
(O(1), O(1)) quasi-isometric to (Nn, Tn), and Tn is uniformly bounded, and Nn inherits
the uniform bound on step and rank from N ′n.
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Recapitulating, we constructed quasi-isometries between Xn and X ′n, then between X ′n and
Yn, and finally between Yn and the Cayley graph of Nn. The multiplicative constants of
these quasi-isometries are all bounded, and the additive ones are bounded by o(Dn), so the
proposition is proved.

2.2 Existence of the limit

By Proposition 2.1.1, it now suffices to show that (Nn, Tn) converges for the Gromov-
Hausdorff metric to a torus of dimension at most q − 1. In this section, we will focus
on the convergence to some Lie group.

Proposition 2.2.1. Suppose (Nn) is a sequence of step l finite nilpotent groups with bounded
generating sets Tn. Then for every Dn →∞, a subsequence of the Cayley graphs (Nn, dTn/Dn)
converges in Gromov-Hausdorff distance to a connected nilpotent Lie group, equipped with
some invariant proper length metric.

Note that in Proposition 2.2.1, we do not require Dn to be the diameter of Nn, but rather
any unbounded sequence. Specialised in the case where the groups Nn are finite, and Dn is
the diameter of the Cayley graph (Nn, Tn), this proposition implies that the limit is a finite
dimensional torus (since a compact connected nilpotent Lie group is necessarily a torus).

We will use the following theorem from [10]:

Theorem 2.2.1. Let N the free c-step nilpotent group on r generators, with its standard
generating set S, and Dn → ∞. Then (N, dS/Dn) converges to some simply connected
nilpotent Lie group NR equipped with some left-invariant proper length metric1 d′.

Proof of Proposition 2.2.1. The bound on the step and on the cardinality of the generating
set ensures that the sequence (Nn, Tn) has a uniform doubling constant (since it can be seen
as a quotient of some fixed nilpotent group: the free rank r step l nilpotent group, with
r, l = O(1)). Hence the rescaled sequence is relatively compact for the Gromov-Hausdorff
metric [7]. Therefore up to passing to a subsequence, we can suppose that the sequence
converges so some limit space (X, d).

Recall that if a sequence of metric spaces (Yn, dn) converges to some locally compact space
for the Gromov-Hausdorff metric (Y, d), then for any ultra-filter on N, the corresponding
ultra-limit of (Yn, dn) is naturally isometric to (Y, d) [7]. Given a sequence yn ∈ Yn, let [yn]
denote the equivalence class of (yn) in the ultralimit.

Let pn : (N, dS/Dn) → (Nn, dTn/Dn) be the natural projection. The pn are each 1-
Lipschitz and surjective, so there is a projection p : (NR, d

′)→ (X, d) from the limit (NR, d
′)

of the (N, dS/Dn) to the limit (X, d) of the (Nn, dTn/Dn) such that for each sequence (xn)
in N ,

[pn(xn)] = p([xn]).

We also have that for every g ∈ Nn, there is a x ∈ N so that pn(x) = g and |g|Tn = |x|S.

1More precisely some Carnot-Caratheodory metric
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We claim thatX is naturally a group. More precisely if dist(gn, g
′
n)→ 0 and dist(hn, h

′
n)→

0 then [gnhn] = [g′nh
′
n]. We can write g′n = gnan and h′n = hnbn with |an|, |bn| → 0. We can

choose xn, cn, yn, dn ∈ (N, d/Dn) that are mapped by pn to gn, an, hn, and bn, respectively,
and so that |cn|, |dn| → 0 in (N, d/Dn). Because (N, d/Dn) is a group, we have [gnhn] =
[p(xn)p(yn)] = [p(xnyn)] = p[xnyn] = p([xnanynbn]) = [p(xnanynbn)] = [gnanhnbn] = [g′nh

′
n].

2.3 End the proof of Theorem 1: bound on the dimension of the
limiting torus

In the last section, we established in that (Xn) converges (up to subsequence) to some torus
T equipped with some proper invariant length metric d∞. The only thing that remains to
be proved is the bound on the dimension.

Proposition 2.1.1 reduced to the case where Xn are Cayley graphs of nilpotent groups
with bounded generating set and step. We will now reduce the problem to the case of a
sequence of Cayley graphs (An, Un) where An is abelian and Un has bounded cardinality. In
the last section we proved that the limit is an abelian compact Lie groups. We did not prove
it directly, but rather using the well-known fact that connected nilpotent compact Lie groups
are abelian. Hence it suggests that the sequence Nn has the same limit as its abelianization.
This is indeed true, and relies on the following simple lemma.

Lemma 2.3.1. Let G be a step l-step nilpotent group. Then every element x in [G,G] can
be written as a product of l commutators.

Proof. The statement is easy to prove by induction on l. There is nothing to prove if l = 1,
so let us assume that l > 1. Note that C l(G) = {1}, so that C l−1(G) is central. Let
x ∈ [G,G]. By induction, x can be written as a product of l − 1 commutators times an
element of C l−1(G). Hence it is enough to prove that every element of C l−1(G) can be
written as a single commutator. Recall that the iterated commutator [x1, [x2[. . . , xl] . . .]
induces a morphims from

⊗l
i=1A to C l−1(G), where A = G/[G,G]. In particular its range is

a subgroup of C l−1(G). Since it contains generators of C l−1(G) it is equal to C l−1(G), which
proves the lemma.

Corollary 2.3.1. Let (T, d∞) be the scaling limit of (Nn, Tn), and let πn : Nn → An =
Nn/[Nn, Nn] be the projection on the abelianization. Then (An, πn(Tn)) converges to (T, d∞).

Proof. The only thing to be checked is that any sequence gn ∈ [Nn, Nn] converges to the
neutral element of T . But by Lemma 2.3.1, gn can be written as a bounded product of
commutators, each of which converges to a commutator in the ultra limit (see proof of
Proposition 2.2.1). So the conclusion results from the fact that T is abelian.

Before stating the main result of this section, let us introduce a useful definition.

Definition: Let (A,U) be a Cayley graph where A is abelian, U = {±e1, . . . ,±ek}. Define
its radius of freedom Rf (A,U) to be the largest R such that the natural projection Zk → A
is isometric in restriction to the ball of radius R.
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The following proposition concludes the proof of Theorem 1:

Proposition 2.3.1. Let (An, Vn) be a sequence of (finite) Cayley graphs where An is abelian,
Vn = {±e1, . . . ,±ek} for some fixed k. Then up to some subsequence, the rescaled sequence
(An, Vn) converges to a torus T of dimension at most the largest integer j such that Dj

n =
O(|An|).

Proof. Let d denote the dimension of T ; we want to show d ≤ j. Clearly we have d ≤ k. The
strategy is to show that we can reduce the number of generators (changing also the group)
to precisely 2d such that the limit still has at least the same dimension.

• Claim 1: Let Rf = Rf (A, V ). By definition, Rf + 1 is the smallest integer such that
there exist (n1, . . . , nk) with

∑
|ni| ≤ 2(Rf + 1) such that n1e1 + · · · + nkek = 0. Up

to permuting the generators, we can assume that nk 6= 0.

• Claim 2: Let B be the subgroup of A generated by the set V = {±e1, . . . ,±ek−1}.
The map (B, V ) → (A,U) is a graph morphism and therefore is 1-Lipschitz, and any
element in A lies at distance at most Rf from its image.

• Claim 3: If Rf (An, Un) = o(Dn), then the sequence of (Bn, Vn) rescaled byDn converges
to a connected abelian Lie group surjecting to the limit of (An, Un).

• Claim 4: Suppose that Rf (Bn, Vn) = o(Dn), then Claim 1 to Claim 3 still hold so that
we obtain a sequence (Cn,Wn) where Cn is the subgroup generated a symmetric subset
W comprising k−2 elements (and their inverses) of V , and such that the limit surjects
to the limit of (Bn, V n).

Iterating this until Rf becomes comparable (up to some subsequence) to Dn, we obtain
that for some l ≤ k, and up to reindexing the ej, the Cayley subgraphs generated by
(±e1, . . .± el), rescaled by Dn converge to a torus of dimension at least d: hence d ≤ l. But
Rf being comparable to Dn, the volume of this subgraph is at least of the order of Rl

f . Since
it is a subgraph, we have l ≤ j. Hence we duly have d ≤ j.

3 Proof of Theorem 2

In this section, we will provide an elementary proof of Theorem 2.

3.1 Proof outline

The proof of Theorem 2 goes approximately as follows. We show using rough transitivity
that if the graph does not converge to a circle, then it must contain a caret of size propor-
tional to the diameter. Then, iterating using rough transitivity, we generate large volume,
contradicting the assumption.
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3.2 Proof

First, we will define a few key terms.

Definition: Given K ≥ 0 and C ≥ 1, a (C,K)-quasi-geodesic in a metric space X is a
(C,K)-quasi isometrically embedded copy of the interval [1, k] into X; i.e. a sequence of
points x1, . . . xk ∈ X such that

C−1(j − i)−K ≤ d(xi, xj) ≤ C(j − i) +K

for all 1 ≤ i < j ≤ k.

Let B(v, r) denote the ball of radius r around a vertex v. A quasi-caret of radius ≥ R
consists of three quasi-geodesic segments γ1, γ2 and γ3 that start from a point v0, escape
from B(v0, R), and move away from one another at “linear speed.” In other words,

Definition: A quasi-caret of radius R is a triple γ1, γ2, γ3 of quasi-geodesics from a vertex
v0 to vertices v1, v2, and v3, respectively, such that d(v0, vi) = R for i = 1, 2, 3, and there is
a constant c > 0 satisfying that for all k1, k2, k3, d(γi(ki), γj(kj)) ≥ cmax{ki, kj} for i 6= j.

If a roughly transitive graph has a quasi-caret of radius ≥ εD, then by moving around this
caret with quasi-isometries (with uniform constants), we obtain at every point of the graph
a quasi-caret (with uniform constants) of radius ≥ ε′D.

The proof of Theorem 2 follows from the following four lemmas.

Lemma 3.2.1. Let D = diam(X). Suppose there exists a quasi-caret of radius R = εD for
some ε > 0 in a finite (C,K)-roughly transitive graph X. Then |X| ≥ ε′Dδ, where ε′ and
δ > 1 depend only on C,K and ε.

Proof. To avoid complicated expressions that would hide the key idea, we will remain at a
rather qualitative level of description, leaving most calculations to the reader.

Given a quasi-caret (γ1, γ2, γ3), we can stack a sequence of disjoint consecutive balls along
the γj’s, whose radii increase linearly with the distance to the center v0. More precisely, one
can find for every j = 1, 2, 3 a sequence of balls Bj

k = B(γj(ik), r
j
k) such that

• C−1d(v0, γ(ik)) ≤ rjk ≤ Cd(v0, γ(ik)) for some constant C ≥ 1,

• rjk ≥ c′R for some 0 < c′ < 1 independent of R,

•
∑

j,k r
j
k ≥ αR where α > 1 is also independent of R,

• the distance between Bj
k and Bj

k+1 equals 1, and all these balls are disjoint (when j and
k vary).

Now, fix some R ≤ εD, and consider a ball B(x,R). It contains a quasi-caret of radius
R. This caret can be replaced by the balls described above, each one of them containing a
quasi-caret of radius rjk. The sum of the radii of these carets is at least αR. We can iterate
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this procedure within each ball, so that at the k-th iteration, we obtain a set of disjoint balls
in B(x,R) whose radii sum to at least αkR. Because the radius R decreases by a factor no
smaller than c′ each time, we can iterate log1/c′ R times. After log1/c′ R iterations, each ball

still has positive radius, so |B(x,R)| ≥ αlog1/c′ RR = R1+log1/c′ (α). Since log1/c′(α) > 0, this
proves the lemma.

Next we will show that under the assumption that no such caret exists, our graphs locally
converge to a line. More precisely,

Lemma 3.2.2. Let Xn be a roughly transitive sequence of graphs of diameter Dn going
to infinity whose carets are of length o(Dn). Then there exists c > 0 such that for n large
enough, any ball of radius cDn is contained in the o(Dn)-neighborhood of a two-sided geodesic
line.

Proof. By rough transitivity, it is enough to prove the lemma for some specific ball of radius
cDn. Start with a geodesic [x, y] of length equal to the diameter Dn. Let z be the middle
of this geodesic. We are going to show that the ball of radius Dn/10 around z is contained
in a o(Dn)-neighborhood of [x, y]. If this was untrue, we would find a constant c′ such that
B(z,Dn/10) contains an element w at distance at least c′Dn of [x, y]. Now pick an element
z′ in [x, y] minimizing the distance from w to [x, y]. The shortest path from z′ to w, together
with the two segments of the geodesic starting from z′ form a caret of size proportional to
Dn.

If we knew that Xn converges, and that the limit is homogenous and compact, then this
lemma would show that the limit is a locally a line, and thus must be S1. If we knew that
there was a large geodesic cycle in Xn, then Lemma 3.2.1 would show that all vertices are
close to the cycle, which would also imply that the limit is S1. However, we know neither of
these two facts a priori, so the next lemma is necessary to complete the poof.

Lemma 3.2.3. Suppose Xn has the property that for some c > 0, and for n large enough,
any ball of radius cDn is contained in the o(Dn)-neighbourhood of a two-sided geodesic line.
Then its scaling limit is S1.

Proof. Let x1, ...., xk be a maximal cDn/10-separated set of points of Xn, and let Bj be the
corresponding balls of radius cDn/100.

We consider the graph Hn whose vertices are labeled by the balls Bj and such that two
vertices are connected by an edge if the corresponding balls are connected by a path avoiding
the other balls.

By maximality, for any v ∈ Xn, there is at least on xi in B(v, cDn/5). Let us consider a
fixed xj. In B(xj, cDn), Xn is well approximated by a line, so there are vertices v1 and v2
on either side of xj such that the balls of radius cDn/5 around v1, v2, and xj are disjoint.
Thus, there must be an xi on either side of xj. Picking on each side the xi that is closest to
xj, we see that the corresponding balls are connected in Hn. Moreover since removing these
two balls disconnects the ball B(xj, cDn/100) from all other xi’s, we see that the degree of
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Hn is exactly two. Hence the graph Hn is a cycle that we will now denote by Z/kZ. To
simplify notation, let us reindex the balls Bj accordingly by Z/kZ.

Let us show that the graph Xn admits a (simplicial) projection onto Z/kZ. If we remove
the balls Bi, we end up with a disjoint union of graphs C1, . . . , Ck, such that Cj is connected
to Bj and Bj+1. Let Vj = Bj ∪ Cj. The graph Vj connects to and only to Vj−1 and Vj+1.
Hence we have a projection from Xn to the cyclic graph Z/kZ sending Vj to the vertex j,
and edges between Vj and Vj+1 to the unique edge between j and j + 1.

Recall that the distance between two consecutive balls Bi and Bi+1 is at least cDn/20.
Now take a shortest loop γ = (γ(1), . . . , γ(m) = γ(0)) in Xn among those projecting to
homotopically non trivial loops in the graph associated to Z/kZ. Clearly this loop has
length at least ckDn/20 (since it passes through all balls Bi). We claim moreover that it
is a geodesic loop. Without loss of generality, we can suppose that γ(0) starts in B0 and
that the next ball visited by γ after B0 is B1. Observe that although γ might exit some Bi

and then come back to it without visiting any other Bj in the meantime, it cannot visit Bi,
then go to Bi+1, and then back to Bi (without visiting other balls in the meantime). Indeed
such a bactrack path could be replaced by a shorter path staying within Bi, contradicting
minimality. It follows that the sequence of Bi’s visited by γ (neglecting possible repetitions)
is given by B0, B1 . . . Bk = B0; namely it corresponds to the standard cycle in Z/kZ. The
same argument implies that the sequence of balls visited by a any geodesic joining two points
in Xn corresponds to a (possibly empty) interval in Z/kZ.

Now, suppose for sake of contradiction that γ is not geodesic. This means that there
exists an interval of length ≤ m/2 in γ which does not minimize the distance between its
endpoints. But then applying the previous remark, we see that replacing either this interval
or its complement by a minimizing geodesic yields a loop whose projection is homotopically
non-trivial, hence contradicting our minimal assumption on γ.

We therefore obtain a geodesic loop in Xn whose Hausdorff distance to Xn is in o(Dn).
Hence the scaling limit of Xn exists and is isometric to S1.

4 A second elementary proof

In this section, we present a second elementary proof of Theorem 2, but under the stronger
assumption that the Xn are vertex transitive. This proof strategy gives us δ = 1− 1

log3(4)
.

Theorem 4.0.1. Suppose Xn are vertex transitive graphs with |Xn| → ∞ and

|Xn| = o(diam(Xn)
2− 1

log3(4) .

Then the scaling limit of (Xn) is S1.

4.1 Proof outline

To prove Theorem 4.0.1, It suffices to show that in a finite vertex transitive graph with small
volume relative to its diameter, there is a geodesic cycle whose length is polynomial in the
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diameter. If a long caret is rooted at a vertex on this cycle, then using transitivity and
iteration we generate large volume, contradicting the assumption. Thus, all vertices must
be close to the cycle.

To find a large geodesic cycle, we use the fact that a finite vertex transitive graph X
contains a diam(X)/8-fat triangle. If this triangle is homotopic to a point after filling in
small faces, this will imply large area and will violate our assumption. Thus, there is a loop
that is not contractable. The smallest non-contractable loop is a geodesic cycle, and since
we filled in all small cycles, this geodesic cycle must be large.

4.2 Proof

We begin by proving a version of Lemma 3.2.1 for vertex transitive graphs.

Definition: A 3-caret of branch-length R is a triple γ1, γ2, γ3 of geodesics from a vertex
v0 to vertices v1, v2, and v3, respectively, such that d(v0, vi) = R for i = 1, 2, 3, and for all
k1, k2, k3, d(γi(ki), γj(kj)) ≥ max{ki, kj} for i 6= j.

Lemma 4.2.1. Let D = diam(X). Suppose there exists a 3-caret of branch length R = εDc

for some ε, c > 0 in a finite vertex transitive graph X. Then |X| > ε′D1+c(log3(4)−1), where
ε′ = (1/2)εlog3(4)−1.

Proof. Suppose γ1, γ2, and γ3 form a 3-caret of branch length R. Let u1, u2, and u3 denote
the vertices at distance 2R/3 from v0 on γ1, γ2, and γ3, respectively, and let u0 := v0. The ui
are at pairwise distance 2R/3 from each other, and so B(ui, R/3) are pairwise disjoint. By
vertex transitivity, there is a 3-caret of branch length R centered at each ui, which intersects
B(ui, R/3) as a 3-caret of branch length R/3. Thus, we have four disjoint balls of radius
R/3, each containing a 3-caret of radius R/3.

We can iterate this procedure, dividing R by three at each step and multiplying the
number of disjoint balls by four. So for any m, B(v0, R) contains 4m balls, each of which
contains a 3-caret of branch length R/3m. Letting m = log3(R), we have that B(v0, R)
contains 4m disjoint 3-carets of branch length 1. In particular, |B(v0, R)| ≥ 4m = Rlog3(4).

There exists a geodesic path γ in X of length D. Let R = εDc. Then it is possible to
take vertices v1, . . . , vD/2R in γ such that B(vi, R)∩B(vj, R) = ∅ for all i 6= j. Summing the
number of vertices in B(vi, R) for 1 ≤ i ≤ D/(2R), and using that |B(vi, R)| ≥ Rlog3(4), we
have

|X| ≥ D/(2R) ·Rlog3(4) = (1/2)εlog3(4)−1D1+c(log3(4)−1).

The fact that a 3-caret of branch length R implies |B(v0, R)| ≥ Rlog3(4) also has con-
sequences for infinite vertex transitive graphs. For example, if an infinite vertex transitive
graph X has linear growth, then there is an upper bound on the size of a 3-caret in X. Since
X has a bi-infinite geodesic γ and a vertex at distance R from γ implies a 3-caret of branch
length R, every vertex in X must be within a bounded neighborhood of γ. Conversely, if
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X does not have linear growth, then there must be vertices at arbitrary distances from any
fixed bi-infinite geodesic. Thus X must have growth at least O(nlog3(4)).

Next, we will show that every vertex-transitive graph with a large diameter has a large
geodesic cycle. We will use the following theorem from [2].

Definition: A geodesic triangle with sides s1, s2, s3 is δ-fat if for every vertex v in X,

dist(v, s1) + dist(v, s2) + dist(v, s3) ≥ δ.

Theorem 4.2.1. Every finite vertex transitive graph with diameter D contains a (1/8)D-fat
triangle.

For completeness, here is the short proof. Given vertices u and v, let uv denote a shortest
path from u to v

Proof. Suppose X is finite and transitive, and D is its diameter. Let w and z realize the
diameter, i.e. |wz| = D. By transitivity there is a geodesic path xy that has z as its
midpoint and length D. Suppose the triangle wxy is not δ-fat. Then there is a point a
on xy such that the distance from a to wy is at most 2δ and the distance from a to wx is
at most 2δ. Suppose, w.l.o.g. that a is closer to x than to y. We have |ax| + |ay| = D,
|wa|+ |ax| < 2δ +D (because a is within 2δ of wx), |wa|+ |ay| < 2δ +D. Add these latter
two and subtract the previous equality, and get |wa| < D/2 + 2δ. Since |wz| = D, this
means that |za| > D/2 − 2δ. Since a is on xy and closer to x, this means that |xa| < 2δ.
Since a is within 2δ from wy, we have |wy| > |wa|+ |ay| − 2δ. Since |xa| < 2δ and |xy| = D
this gives |wy| > |wa|+D− 4δ. Since |wy| is at most D, this implies |wa| < 4δ. But |za| is
at most D/2. so D = |wz| ≤ |wa|+ |za| < 4δ +D/2 So D < 8δ.

Lemma 4.2.2. Suppose X is a finite d-regular vertex-transitive graph such that |X| <
(α/d)D2−c, where α =

√
3/576. Then X contains a geodesic cycle of length Dc.

Proof. We will begin by proving two claims.

Claim 1: Suppose H is a d-regular planar graph, every face of H except the outer face has
a boundary of length at most Dc, and H contains a (1/8)D-fat geodesic triangle. Then
|H| > (α/d)D2−c.

This is a variant of Besicovich’ lemma for squares. Fill each face f of H with a simply
connected surface of area at most |f |2 so that distances in H are preserved (for example,
a large portion of a sphere), and consider the (1/8)D-fat geodesic triangle in the simply
connected surface X obtained. The triangle has sides s1, s2, and s3, of lengths at least
(1/8)D. The map f from X to R3

+ taking a point x to (dist(x, s1), dist(x, s2), dist(x, s3))
is 3-Lipschitz, so the area of the image of f is smaller than 9 times the area of X. For
each (x1, x2, x3) in the image we have x1 + x2 + x3 > (1/8)D, so projecting radially to the
simplex x1 + x2 + x3 = (1/8)D does not increase the area. The projection of the image of
the boundary of the triangle is the boundary of the simplex, so the projection is onto. Thus,
the area of X is bigger than 1/9

√
3((1/8)D)2.
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Each face f of H contributes |f |2 to the area to X, so we can say that each vertex on
the border of f contributes |f | to the area of X. Each vertex of H participates in at most d
faces, each of which is of size at most Dc so area(X) ≤ dDc|H|. Thus |H| > α/dD2−c where
α = (1/9)

√
3(1/8)2.

Claim 2: Suppose X is a finite d-regular graph that contains a (1/8)D-fat triangle A, and let
T denote the topological space obtained from X by replacing each cycle of length at most Dc

with a euclidean disc whose boundary matches the cycle. If A is homotopic in T to a point,
then |X| > (α/d)D2−c.

Suppose A is homotopic to a point. Then a continuous map from S1 to A can be extended
to a continuous map from the disk B1 to T (X,Dc). The image of this map has a planar
sub-surface S with boundary A. Intersecting S with X, we obtain a planar subgraph H of
X such that each face has a boundary of length at most Dc except for the outer face, which
has A as a boundary. By Claim 1, |X| ≥ |H| > (α/d)D2−c.

Now we will prove the lemma. Because |X| < (α/d)D2−c, Claim 2 tells us that T is
not simply connected. Any loop in T is homotopic to a loop in X, so since T is not simply
connected, there exists a topologically non-trivial loop in X. Let ` denote the non-trivial
loop in X which has minimal length.

Given any two vertices u and v in `, the shortest path from u to v is homotopic to at
most one of the two paths p0, p1 in ` between u and v; say it is not homotopic to p0. If
the length of p∗ is shorter than the minimum length of p0 and p1, then it would be possible
to replace p1 with p∗ to obtain a loop `′ which is non-trivial and shorter than `. Thus, the
shortest path in X between any two vertices in ` is a path in `, so ` is a geodesic cycle.

Because all cycles of length less than Dc are homotopic to a point in T , ` must have
length greater than Dc.

Proof of Theorem 4.0.1. Let Dn denote the diameter of Xn and c = 1
log3(4)

. It suffices to

show that for large enough n, there is a geodesic cycle Cn in Xn such that |Cn| > Dn
c and

max
v∈Xn

(dist(v, Cn)) = o(Dn
c).

For large enough n, |Xn| < (α/d)Dn
2−c, so Lemma 4.2.2 guarantees the existence of a

geodesic cycle Cn with |Cn| > Dn
c. By Lemma 4.2.1, if there were a 3-caret of branch length

εDn
c, we would have |Xn| ≥ ε′Dn

1+c(log3(4)−1) = ε′Dn
2−c. So for all ε and large enough n,

there is no 3-caret of branch length εDn
c. But for ε < Dn

c/4, a vertex at distance εDn
c from

Cn implies a 3-caret of branch length εDn
c. Thus, for every ε and for large enough n, all

vertices in Xn are within distance εDn
c from Cn.
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5 Further results and open questions

5.1 Compact homogeneous manifolds approximable by finite ho-
mogeneous metric spaces are tori

Proposition 5.1.1. Let M be a homogeneous riemannian manifold which is the Gromov-
Hausdorff limit of a sequence of homogeneous finite metric spaces. Then M is a torus.

Proof. Let (Xn, dn) be the sequence of approximating metric spaces, and let Gn be their
isometry groups. Let d̂n be the bi-invariant distance on Gn defined by

d̂n(f, g) = max
x∈Xn

dn(f(x), g(x)).

Suppose Xn converges to some compact metric space X, we claim that Gn has a subsequence
converging to a group G of isometries acting transitively on X. Then the proposition will
follow from Turing’s theorem mentioned in the introduction. Since the argument is standard,
we will only sketch it, and leave the details to the reader. The sequence Xn being convergent,
it is equi-relatively compact: for all ε > 0, there exists N such that Xn is covered by N balls
of radius ε > 0. It is then easy to check that the sequence Gn is also equi-relatively compact,
which implies that it has a converging subsequence, whose limit will be denoted by G.

For the second part of the proof, one can use the fact that when a sequence of metric
spaces Yn converges to a metric space for the Gromov-Hausdorff metric, then the limit is
natually isometric to any ultralimit of Yn with respect to any (non-principal) ultrafilter β
on N. Then seeing X and G as ultralimits of Xn, resp. Gn, it is easy to check that G is a
group and acts transitively by isometries on X.

5.2 What about an analogue of Theorem 2 in higher dimensions?

Theorem 2 cannot be generalized to “higher” dimensions (as in Theorem 1) because any
compact manifold can be approximated by a roughly transitive sequence of graphs. Moreover,
there are sequence of roughly transitive graphs with no convergent subsequence, but with a
good control on the volume. Here we will sketch the construction of such a sequence.

Recall that compactness is closed under Gromov-Hausdorff limit. Hence a limit X of our
sequence Xn, if a limit exists, is necessarily compact. As a result, X has doubling property
at any fixed scale: in particular there exists k ∈ N such that any ball of radius diam(X)/2 is
covered by k balls of radius diam(X)/4. Then for n large enough, balls of radius diam(Xn)/2
are covered by 2k balls of radius diam(X)/4.

We start by picking a sequence of Cayley graphs Yn with no converging subsequence
(but without control on the volume). For example, let S be a finite generating subset of
G = SL(3,Z), and let Yn be the Cayley graph of Gn = SL(3,Z/nZ) associated to the
(projected) generated set S. The fact that Yn is an expander violates the previous doubling
condition, and hence Yn does not have any converging subsequence (we leave this easy and
standard fact to the reader).
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Then convert Gn-equivariantly the Yn into Riemannian surfaces Sn by replacing edges
with empty tubes, and smoothing the joints that correspond to vertices in Yn. The radius
of the tubes in Sn will be some Ln to be determined later, and the length will be 2Ln.
Independently of the choice of Ln, these Sn are uniformly roughly transitive. This follows
because the Sn are all rescaled versions of manifolds S ′n that cover the same compact manifold
M . For any two points x, y ∈M , there is a diffeomorphism of M taking x to y, with uniform
bounds on the derivative and the derivative of the inverse. This property extends to the
covering manifolds S ′n, and thus to Sn.

To obtain the sequence Xn of roughly transitive graphs, replace Sn with a tiling with
bounded faces, chosen so that the Xn remain roughly transitive. Choose Ln large enough
so that |Xn| = o(log(diam(Xn)) diam(Xn)2). This is possible, for example, by choosing Ln
to grow asymptotically faster than 1

D2
n
(|Yn| − D2

n logDn), where Dn denotes the diameter

of Yn. Let X ′n denote Xn normalized by diam(Xn). It remains to show that X ′n has no
convergent subsequence. However, the Gromov-Hausdorff distance from X ′n to Yn is roughly
Ln/ diam(Xn) = 1/ diam(Yn) → 0. Since Yn has no convergent subsequence, neither does
X ′n.

Remark: Note that in the above construction we can bound the volume by a function of
the diameter which is as close as we want to quadratic. But this leaves open the problem
of finding a sequence of roughly transitive graphs with subquadratic growth which does not
admit a converging subsequence. Also we do not know what could be the best δ for which
Theorem 2 holds (δ = 2?). Finally finding a converging counter-example to Theorem 2 with
δ < 2 would be of special interest as the limit would be quite an exotic object: it would be
a compact geodesic metric space with Hausdorff dimension in (1, 2), and such that for every
pair of points x, y ∈ X, there exists a C-bilipschitz homeomorphism sending x to y, where
C only depends on X. We do not know if such object exists.
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